第一点,为使金属原子的少数价电子,能够适应高配位数的需要,成键时价电子必须是“离域”的即不再从属于任何一个特定的原子,所有价电子应该属于整个金属晶格的原子共有。
第二点金属晶格中原子很密集,能组成许多分子轨道,而且相邻的分子轨道能量差很小,可以认为各能级间的能量变化基本上是连续的。
第三点分子轨道所形成的能带,也可以看成是紧密堆积的金属原子的电子能级发生的重叠,这种能带是属于整个金属晶体的。例如,金属锂中锂原子的1S能级互相重叠形成了金属晶格中的1S能带,等等。每个能带可以包括许多相近的能级,因而每个能带会包括相当大的能量范围,有时可以高达418 kJ/mol。
第四点,按原子轨道能级的不同,金属晶体可以有不同的能带,由已充满电子的原子轨道能级所形成的低能量能带,叫做“满带”;由未充满电子的原子轨道能级所形成的高能量能带,叫做“导带”。
第五点,金属中相邻近的能带也可以互相重叠,如铍的2s轨道已充满电子,2s能带应该是个满带,似乎铍应该是一个非导体。但由于铍的2s能带和空的2p能带能量很接近而可以重叠,2s能带中的电子可以升级进入2p能带运动,于是铍依然是一种有良好导电性的金属,并且具有金属的通性。
所以,根据能带理论的观点,金属能带之间的能量差和能带中电子充填的状况决定了物质是导体、非导体还是半导体,其实也叫做金属、非金属或准金属。
因此如果物质的所有能带都全满或最高能带全空,而且能带间的能量间隔很大,这个物质将是一个非导体;如果一种物质的能带是部分被电子充满,或者有空能带且能量间隙很小,能够和相邻有电子的能带发生重叠,它就是一种导体。
而半导体的能带结构则是满带被电子充满,导带是空的,而禁带的宽度很窄,在一般情况下,由于满带上的电子不能进入导带,因此晶体不导电。
由于禁带宽度很窄,在一定条件下,使满带上的电子很容易跃迁到导带上去,使原来空的导带也充填部分电子,同时在满带上也留下空位,因此使导带与原来的满带均未充满电子,所以能导电。
能带理论也能很好地说明金属的共同物理性质。向金属施以外加电场时,导带中的电子便会在能带内向较高能级跃迁,并沿着外加电场方向通过晶格产生运动,这就说明了金属的导电性。