3号卡袋:┐p1∧┐p2∧p3
4号卡袋:┐p1∧┐p2∧┐p3∧p4
10号卡袋:┐p1∧┐p2∧∧┐p9∧p10
最终剩余卡片:┐p1∧┐p2∧∧┐p10
最后由于这些卡片被彼此分开,所以我们最终可以自由选择任意多个卡袋的卡片合在一起,也就是上述表达式之间的‘或’;其中最重要的,是从1~k号的连续k个卡袋中的卡片合在一起,其结果为:p1vvpk,即以p1为开头的连续‘或’运算;
而经过k号读卡单元后机器上剩余的卡片,可表示为┐p1∧∧┐pk,即以┐p1为开头的连续‘与’运算。”
“所以,凡是能变换成上述形式表达式的命题,就是分类机能够查找的,否则,就是分类机不能查找的。”
“我给加奈出的问题,找出三亚大区除奴隶以外的卡片,可以分解成如下的简单命题或简单命题的非命题:
命题a:‘地区码第1位不为1’,
命题b:‘地区码第2位不为0’,
命题c:‘地区码第3位不为0’,
命题d:‘地区码第4位不为1’,
命题e:‘地区码第5位为1’,
命题f:‘地区码第5位不为2’
命题g:‘地区码第6位不为9’
命题h:‘地区码第7位不为9’
┐a∧┐b∧┐c∧┐d∧e,这是10011,三亚榆林,它符合5号卡袋的表达式,所以这些卡片位于5号卡袋中,可以记为p5。
┐a∧┐b∧┐c∧┐d∧┐e∧┐f∧g,这是100120~100128,三亚田独11~89公社,它符合7号卡袋的表达式,所以这些卡片位于7号卡袋中,可记为p7。
┐a∧┐b∧┐c∧┐d∧┐e∧┐f∧┐g∧h,这是1001290~1001298,三亚田独90~98公社,它符合8号卡袋的表达式,所以这些卡片位于8号卡袋中,可记为p8。
后两者合起来,即p7vp8,是三亚田独,但不包括奴隶。三者全部合起来,即p5vp7vp8,是我们所要的结果。因为这个表达式符合我们上面的形式,所以分类机可以解决。”
“而‘(a∧b∧c)v(a∧d∧e)’,无论我们怎样变换,是不能变换成上述表达式的,因而是当前的分类机所不能解决的。”
“好,问题来了,怎样变换表达式?”这时他看向了冯珊。
“这是0和1的布尔代数。”冯珊答道,她的眼睛里透出着迷的神色。